
Proceedings

8th International Workshop, CSLP 2016

October 17, 2016, affiliated with ICLP 2016

Edited by

Henning Christiansen and Verónica Dahl

Preface

Constraints are widely used in linguistics, computer science, and psychology.
How they are used, however, varies widely according to the research domain: nat-
ural language processing, knowledge representation, cognitive modeling, problem
solving mechanisms, etc. Since 2004, the CSLP workshop series has addresses
different constraint oriented ways of modelling and treating language, and this
time – the 8th CSLP workshop – it is affiliated with the International Confer-
ence of Logic Programming, and focuses (non-exclusively) on logic programming
based methods.

This workshop addresses the question of how to best integrate constraints
from an interdisciplinary perspective and with logic programming as a pivot,
in view of powerful and robust human language processing. The topics include,
but are not limited to, constraint-based linguistic theories, constraints in hu-
man language comprehension and production, Constraint Handling Rules (CHR)
and Constraint Handling Rule Grammars (CHRG), context modeling and dis-
course interpretation, acquisition of constraints, grammar induction through con-
straints, probabilistic constraint-based reasoning, constraint satisfaction tech-
nologies and constraint logic programming – all around the axis of logic pro-
gramming.

Several years of CSLP workshops (see left menu) aiming at integrating the
different approaches on Constraint Solving and Language Processing shed light
upon possible common frameworks capable of explaining how constraints play
a role in representing, processing and acquiring linguistic information, and this
from a formal, technical, and cognitive perspective. Among these frameworks,
those that contained logic programming as a main aspect emerged as the most
promising ones, e.g.. Constraint Handling Rules (CHR) as an extension to the
logic programming language Prolog has added a mechanism for forward-chaining
reasoning to complement Prolog’s standard backwards chaining, goal-directed
style. The combination of the two proved to provide a very powerful reasoning
framework that creates an extended potential in applying logic programming for
language processing and reasoning. Such results allow us to predict that adding
logic programming may quite likely jump-start a whole new area of research that
stands to revolutionize and revitalize formal logic approaches to NLP, adding
robustness and flexibility to the models that can now be achieved, while elegantly
marrying efficiency with direct executability.

Henning Christiansen and Verónica Dahl
Roskilde, Vancouver, October 2016

Organization

Organizers and program chairs

Henning Christiansen, Roskilde University, Denmark
Verònica Dahl, Simon Fraser University, Canada.

Steering committee

Philippe Blache
Henning Christiansen
Verònica Dahl
Denys Duchier
Jørgen Villadsen
Yannick Parmentier

Program Committee

Maria Aloni Wolfgang Menzel
Leonor Becerra-Bonache Yannick Parmentier
Philippe Blache Gerald Penn
Lucas Champollion Fred Popowich
Denys Duchier Patrick Saint-Dizier
M. Dolores Jimenez-Lopez Jørgen Villadsen
Ruth Kempson David Scott Warren

Contents

Lucas Champollion:
Why you can’t order 50 ◦F of beer of beer and other puzzles
(Abstract of Invited talk) 1

Emily C. LeBlanc and Marcello Balduccini:
Interpreting Natural Language Sources Using Transition Diagrams 2

Philippe Blache:
Good-enough parsing, Whenever possible interpretation:

a constraint-based model of sentence comprehension 14

Peter Schüller, Carmine Dodaro and Francesco Ricca:
ASP for Abduction in Natural Language Understanding

made more efficient using External Propagators 19

Why you can’t order 50 ◦F of beer
and other puzzles

Lucas Champollion

Department of Linguistics
New York University
New York, NY, USA

Email: champollion@nyu.edu

Abstract. Why can I tell you that I ran for five minutes but not that I
ran all the way to the store for five minutes? Why can you say that there
are five pounds of books in a parcel if it contains several books, but not
five pounds of book if it contains only one? What keeps you from using
50 ◦F of beer of beer to order some beer whose temperature is 50 degrees
Fahrenheit when you can use 50 ounces of beer to specify its volume?
And what goes wrong when I complain that *all the ants in my kitchen
are numerous?

The constraints on these constructions involve concepts that are
generally studied separately within formal semantics: aspect, plural and
mass reference, measurement, and distributivity. This talk provides a
unified perspective on these domains that explains each of the puzzles
above and relates them to one another.

– 1 –

Interpreting Natural Language Sources Using
Transition Diagrams

Emily C. LeBlanc and Marcello Balduccini

College of Computing and Informatics
Drexel University

{leblanc, mbalduccini}@drexel.edu

Abstract. We introduce the early stages of an investigation into a novel
method for interpreting natural language sources that describe sequences
of actions. Beyond representing the actions themselves, the approach
leverages natural language processing techniques and constraint-based
reasoning to represent and reason about the state of the world before,
during, and after them. We believe that deep reasoning can be carried
out over the representation by Information Retrieval and Question An-
swering systems.

1 Introduction

Natural language understanding is central to modern Information Retrieval and
Question Answering research. Tasks in both fields are concerned with gaining
an understanding of the content of natural language sources. In some works,
the approach to understanding is strictly syntactic or statistical while others
attempt to understand and represent the meaning of the content of the sources
(discussed in Section 2). In this paper, we are concerned with the latter ap-
proach and present our initial investigation into a novel method for interpreting
natural language sources that describe sequences of actions. Beyond extracting
and representing the actions themselves, the approach leverages natural lan-
guage processing techniques and constraint-based reasoning over domain and
commonsense knowledge to learn and represent information about the state of
the world before, during, and after them. Inspired by techniques from reasoning
about actions and change, we assume that the knowledge exists as constraints
using Answer Set Programming (ASP). These constraints embody a transition
diagram describing all possible world states of the domain and the actions that
trigger transitions between them. Given a natural language source describing a
sequence of actions occurring in some domain, our task is to map that sequence
and corresponding state information, via inference, to one or more paths in the
transition diagram. The resulting path (or paths) describe possible evolutions of
the domain that are consistent with the content of the source. The path itself,
then, is a detailed semantic representation upon which deep reasoning can be
carried out by Information Retrieval and Question Answering systems.

– 2 –

The organization of this paper is as follows. In the next section, we describe
the motivation of the work in greater detail and discuss related research. Follow-
ing that, we introduce the high-level steps that comprise the current approach.
Then, we provide background for our formalization of knowledge and actions
using Answer Set Programming. In the section that follows, we describe the de-
tails of the present approach to mapping natural language sources to paths of
the transition diagram. Following that, we present two use cases to demonstrate
the current capabilities as well as immediate goals for our ongoing research. We
conclude with a summary of the work and some closing discussion.

2 Motivation

This work is a step forward towards emulating the level of intuition used by
humans when we read and comprehend documents describing events. For exam-
ple, when we read a news article we do not only retain the chain of events that
it describes. We also use our understanding of the context in which the events
occurred together with our commonsense knowledge to form a picture of the
evolution of the state of the world throughout the scenario and how the world
may be affected by it. In this section, we discuss a number of approaches to rep-
resenting the content of natural language sources and provide a demonstration
of the level of understanding that motivates this investigation.

Information Retrieval is concerned with retrieving documents that are most
likely to fulfill the information need represented by queries. In the classical IR ap-
proach to representing sources, the texts are broken down into lists of keywords,
terms, and other content descriptors. When presented with a query, an IR sys-
tem typically determines the relevance of a document to the query by measuring
the overlap of terms between the query and a particular source [11]. A number
of mature approaches have been developed to improve search results using tech-
niques such as temporal ordering [6], query expansion [7], and graph based term
weighting [5], however these approaches can fail to capture the deeper semantic
meaning of the source as the representations are constructed using syntactical
methods. Recent work in event-centered IR [8] has focused on modeling the con-
tent of sources as a graph composed of mentioned events and their temporal
relationships; however, the approach does not consider the evolution of the state
of the world in correspondence to these actions. The primary goal of the work
presented here is to address this gap and attempt to overcome the shortcomings
of syntactic-based methods.

Consider the following (heavily) simplified example of knowledge of the fac-
tors that affect a geographical area’s socioeconomic status (SES). The knowledge
base consists of the following four rules:

1. When new stores open, commercial property values may increase.
2. Rising commercial property values may drive out small business

stores.
3. When stores close, the number of jobs in the area may decrease.

– 3 –

4. An area’s SES may decrease when the number of jobs in the area
decreases.

Assume that we have access to the following set of natural language sources:

– Ten new jobs were created after four new stores opened on Lancaster
Avenue in 2000.

– Two small businesses on Lancaster Ave closed in 2005.

Using our knowledge base, we look at the events described in the sources and
begin to infer facts about the state of the world. Considering the first source with
respect to rule (1) in the knowledge base leads us to believe that commercial
property values may increase as a result of the new stores opened. From rule
(2), we also see that small businesses could eventually be driven out by the
value increase. Considering the second source with respect to rule (3), we can
intuit that the stores closing may reduce the number of jobs and from rule (4) we
know that the reduction in the number of jobs can possibly result in a lower SES
for the area. We propose that this level of reasoning can be employed to construct
a representation of paths corresponding to the example sources. Suppose that
for both of the sources, we have a corresponding representation of the ordering
and the intuition described here. If we were to query an Information Retrieval
system for relevant documents containing information related to a decrease in
SES for Lancaster Avenue, we would expect that the system would leverage the
available knowledge with its semantic understanding of the sources to return
these sources.

The approach may also contribute to advances in Question Answering. As-
suming that a QA system has access to the knowledge described above, consider
the following question: Why did Lancaster Avenue experience a drop in Socioe-
conomic Status (SES)?

Considering our knowledge base and the two documents that we have al-
ready interpreted, we can intuitively conclude that Lancaster Ave may have
experienced a drop in SES because of a chain of events set in motion when four
new stores opened. The resulting increase in property values could have driven
out two of the small business which in turn decreased the number of jobs in the
area. Finally, the area’s SES may have decreased because the number of jobs
in the area decreased. The somewhat more distant goals of this work includes
combining multiple models of documents related to question in order to form a
deep semantic representation of the domain.

3 Approach

In this section, we present the high-level approach to interpreting natural lan-
guage and building the model. Our approach to interpreting a source is composed
of two high-level steps: Processing a natural language source, and reasoning
about state information in order to enable the construction of a path.

– 4 –

3.1 Processing the Natural Language Source

The first step involves extracting mentions of actions from a natural language
source. After collecting the actions, they are placed in a chronologically ordered
list. Finally, we translate each action into a corresponding logical statement
describing the occurrence of the event at its specific step. For example, if an
action is at the first position in the list, we say that it occurs at time step 0. The
resulting set of statements is called the problem instance.

3.2 Reasoning About State Information and Path Construction

Our approach assumes the existence of commonsense and domain-specific knowl-
edge in our approach. Building knowledge repositories is the subject of much
research activity (e.g., Cyc). The knowledge is expressed as ASP rules in a pro-
gram called the domain description. Inference is applied to the instance and
domain description are reasoned over together to determine how the effects of
the actions are propagated. The result of the reasoning process is a collection of
facts about each step in the evolution of the domain. Combining the collection
of actions extracted during the source processing step and the state information
from the reasoning step, enough information is available to reveal one or more
possible paths of the domain’s transition diagram. The edges of a path corre-
spond to the actions mentioned in the source document and the nodes contain
information about the state of the world before, during, and after them.

4 Preliminaries

We preface the description of the details of our approach with a discussion about
the syntax and semantics of ASP [10] as it pertains to our work. The discussion
is necessary to enable a clear description of the work of this paper.

Let Σ be a signature containing constant, function and predicate symbols.
Terms and atoms are formed as in first-order logic. A literal is an atom a or
its strong negation ¬a. A rule is a statement of the form: h1,∨ . . .∨, hk ←
l1, . . . , lm,not lm+1, . . . ,not ln where hi ’s (the head) and li’s (the body) are
literals and not is the so-called default negation. Its intuitive meaning in terms of
a rational agent reasoning about its beliefs is “if you believe {l1, . . . , lm} and have
no reason to believe {lm+1, . . . , ln}, then you must believe one of hi’s.’ Symbol
← is omitted if the body is empty. Rules of the form h ← l1, . . . ,not ln,not h
are abbreviated ← l1, . . . ,not ln, and called constraints, intuitively meaning
that {l1, . . . ,not ln} must not be satisfied. A rule with variables denoted by an
uppercase initial is interpreted as a shorthand for the set of rules obtained by
replacing the variables with all possible variable-free terms. An ASP rule with
an empty body is called a fact, and that in writing facts, the ← connective
is dropped. A program is a set of rules over Σ. A consistent set S of literals
is closed under a rule if {h1, . . . , hk} ∩ S 6= ∅ whenever {l1, . . . , lm} ⊆ S and
{lm+1, . . . , ln} ∩ S = ∅. Set S is an answer set of a not-free program Π if S

– 5 –

is the minimal set closed under its rules. The reduct, ΠS , of a program Π
w.r.t. S is obtained from Π by removing every rule containing an expression
“not l” s.t. l ∈ S and by removing every other occurrence of not l. Set S is an
answer set of Π if it is the answer set of ΠS . For a convenient representation of
choices, in this paper we also use constraint literals, which are expressions of the
form m{l1, l2, . . . , lk}n, where m, n are arithmetic expressions and li’s are basic
literals. A constraint literal is satisfied w.r.t. S whenever m ≤ |{l1, . . . , lk}∩S| ≤
n. Constraint literals are especially useful to reason about available choices. For
example, a rule 1{p, q, r}1 intuitively states that exactly one of {p, q, r} should
occur in every answer set.

For the formalization of the evolution of the domain over time, we employ
techniques from reasoning about actions and change. Fluents are first-order
terms denoting properties of interest in a domain whose truth value may change
over time. For example, opened(s1,o2) may represent the fact that store s1 was
opened by owner o2. Fluents are further distinguished as inertial, whose truth
value persists over time. A fluent literal is a fluent f or its negation ¬f . A set A of
fluent literals is consistent if ∀f, {f,¬f} 6⊆ A and complete if ∀f, {f,¬f}∩A 6= ∅.
The fact that a fluent f holds at a step i is represented by the ASP atom
holds(f, i). Similarly, if f does not hold at step i, we write ¬holds(f, i). Oc-
currences of actions are represented by occurs(f, i). Actions are represented by
first-order terms as well. The occurrence of an action a at step i is represented
by an ASP atom occurs(a, i).

A domain description consists of a collection of ASP rules determining the
direct and indirect effects of the domain’s actions and the actions’ executability
conditions – statements describing dependencies between fluents [2].

The three main types of ASP rules used in a domain description are discussed
next. In the following, S is a variable ranging over all possible steps in the
evolution of the domain. Given a fluent literal l, the abbreviation χ(l, S) stands
for holds(f, S) if l = f , and ¬holds(f, S) if l = ¬f .

A dynamic (causal) law is a statement of the form:

χ(l0, S + 1)← χ(l1, S), . . . , χ(ln, S), occurs(a, S). (1)

where a is an action and li’s are fluent literals. The statement intuitively means
that if a is executed in a state in which l1, . . . , ln hold, it causes l0 to hold in the
resulting state.

A state constraint is a statement of the form:

χ(l0, S)← χ(l1, S), . . . , χ(ln, S). (2)

where li’s are fluent literals. The statement says that l0 holds whenever l1, . . . , ln
hold.

An executability condition is a statement of the form:

← χ(l1, S), . . . , χ(ln, S), occurs(a, S). (3)

where a and li’s are as above. The statement says that action a cannot be
executed if l1, . . . , ln hold.

– 6 –

The domain description also contains rules that capture the principle of in-
ertia, which states that things generally stay as they are [12].

holds(F, S + 1)← fluent(F), holds(F, S), not ¬holds(F, S + 1). (4)

¬holds(F, S + 1)← fluent(F),¬holds(F, S), not holds(F, S + 1). (5)

The next rule is called the “awareness axiom” and ensures that a reasoner
considers both possible cases of any fluent whose initial truth value is unknown[9].

holds(F, 0) ∨ ¬holds(F, 0)← fluent(F). (6)

Note that, if complete knowledge about the initial state is available in the prob-
lem instance, then the awareness axiom is rendered inapplicable [3].

A set A of fluent literals is closed under a state constraint if either l1, . . . , ln 6⊆
A or l0 ∈ A. A state of a domain description D is a complete and consistent set
of fluent literals closed under the state constraints of D. Given state σ, h(σ, i)
denotes {holds(f, i) | f ∈ σ} ∪ {¬holds(f, i) | ¬f ∈ σ}. Action a is executable in
state σ iff D∪h(σ, 0)∪{occurs(a, 0)} has at least one answer set. The set of the
possible evolutions of D is represented by a transition diagram, i.e., a directed
graph τ(D) = 〈N,E〉 such that:

1. N is the collection of all states of D;
2. E is the set of all triples 〈σ, a, σ′〉 where σ, σ′ are states, a is an action that

is executable in σ, and D ∪ h(σ, 0) ∪ {occurs(a, 0)} has an answer set, A,
such that h(σ′, 1) ⊆ A.

A sequence 〈σ0, α0, σ1, . . . , αk−1, σk〉 is a path of τ(D) if every 〈σi, αi, σi+1〉 is
a valid transition in the graph. Each path is a possible evolution of the world
consistent with the sequence of events from the source. In Section 6, we will see
that these paths are useful for representing the semantics of a sequence of events.

5 Mapping Natural Language to Paths of a Transition
Diagram

To demonstrate how a path is constructed step by step, this section follows the
processing of a sample natural language source into a sequence of actions and
information about state of the world before, during, and after them. Although
multiple paths may be identified by the approach, for simplicity’s sake we focus
on the construction of a single path.

At this early stage of the research, we have simplified a number of aspects
of the implementation. We will directly address these simplifications as they
arise in the discussion and address how we intend to lift them as the research
continues.

We are concerned in part with the ordering of action mentions and so our ini-
tial investigation considers a specific format for natural language sources. Much
research exists regarding the detection of event mentions and their temporal

– 7 –

relationships [14,13], however at this point we employ a simple method to con-
tribute to the proof of concept. The current approach requires that the natural
language sources contain a single sentence conforming to the following template:

e1〈temporal relation〉e2
where e1 and e2 are mentions of actions and the temporal relation tag is one

of the markers from Allen’s interval calculus[1], for example before, after. This
marker represents the temporal relationship of events e1 and e2. Consider the
following sentence:“Store owners created jobs after they opened new stores.”

Intuitively, e1 maps to the statement that jobs were created by store owners,
e2 corresponds to the statement that new stores were opened, and the temporal
relation after indicates that the four new stores opened prior to the creation of
the new jobs. As our work continues, we will incorporate temporal relationship
extraction which will enable us to lift the constraints placed on the format of
the sources.

The first task is to extract the event mentions from the sources. To do so, the
system uses a syntactic translation to detect the events and translate them to
an equivalent ASP form, however, work exists to translate natural language to
ASP using more advanced techniques. NL2KR [4] is a sophisticated system for
such a translation up to the point of being able to learn meanings of words that
it has not encountered before. We intend to explore the integration of this work
into our implementation to improve the natural language translation. Presently,
the system parses the source text using the Stanford CoreNLP libraries1 which
yields tokens, syntactic dependency information, coreference information, and
other syntactic attributes of the input text. This information is used to further
interpret the natural language text.

From the syntactic dependencies, the system may extract two kinds of ac-
tion tuples by linking dependencies across the sentence. The first is of the form
〈action, subject/object〉 and represents actions related to a subject or object, but
not both (e.g. “stores opened” or “jobs were created”). The second is of form
〈action, subject, object〉 and represents actions performed by a subject with re-
spect to some object (e.g. “Store owners created jobs.” becomes 〈created, owners,
jobs〉).

Once the system has extracted the action tuples, it uses the coreference
information obtained from the parsing step for anaphora resolution if needed.
Finally all verbs are lemmatized to obtain the base forms. In the case of our
running example, the system returns the predicates 〈create,owners,jobs〉 and
〈opened, owners, stores〉.

The goal of the next step is to store the action predicates in a chronologically
ordered list. The current approach extracts the temporal tag from the natural
language source. In our example, the source contains the word “after” which is
interpreted to signify that 〈opened, owners, stores〉, or e1 from our specification
of source format, should appear in the list after 〈create,owners,jobs〉, or e2.

1 http://stanfordnlp.github.io/CoreNLP/

– 8 –

Step Action is open(stores) exists new(jobs)

0 open(owners,stores) false false

1 create(owners,jobs) true false

2 – true true

Table 1. Values of domain fluents before, during, and after example events.

The system then translates the predicates to the ASP problem instance as
follows. It first converts the predicate tuples into corresponding ASP form ac-
tion(subject) or action(actor,target). In our example, we have open(owners,stores)
and create(owners,jobs). Finally, we assign occurrences of the actions to steps
based on the ordering, and we encode the information by means of occurs(a, i)
statements. For the example above, the corresponding facts are:

occurs(open(owners,stores),0).
occurs(create(owners,jobs),1).

The domain description contains information about opening and creating
things. Knowledge of the act of opening a store is represented using the follow-
ing two rules:

fluent(is open(Y)) ← occurs(open(X,Y),S).
holds(is open(Y),S+1) ← occurs(open(X,Y),S).

The first rule defines a fluent of the form is open(Y,X) for every occurrence
of an action open(X,Y)2. The second rule states that the effect of X opening
Y is that Y is open. Knowledge of X creating Y is similarly encoded by rules
stating that, if X creates Y , then there exists new Y . The task of finding the
corresponding paths in the transition diagram can now be reduced to that of
invoking an ASP solver, such as clingo3, to find the answer sets of the problem
instance and the domain description.

Finally, the system extracts from the answer set(s) the information about
each state of the domain. The results are quite intuitive - once the stores have
been opened, they remain open in all subsequent states thanks to the inertia
axiom (and unless otherwise specified by other portions of the source). Similarly,
once the jobs are created, they remain in existence in subsequent states. The
system additionally displays the path(s) in a graphical way, as shown in Figure
1.

2 This is a simple way of defining the fluents relevant to the source, but more sophis-
ticated techniques could be applied.

3 http://potassco.sourceforge.net/

– 9 –

Fig. 1. Path for the sentence “Store owners created jobs after they opened new stores.”

6 Use Cases

In this section, we present two use cases to illustrate the depth of understanding
that is achieved with our approach and some immediate goals of the research.

6.1 Use Case 1: Google Acquires Motorola

To demonstrate the importance of awareness and inertia axioms in our approach,
we will begin by processing a natural language sources using both. Then we will
observe the change in quality of the representation when we remove awareness
and then inertia from the knowledge base. In Use Case 1, we would like to find
a path that corresponds to the following sentence[8]: “Google bought Motorola
after the government approved the acquisition.”

The domain description contains information about the effects of purchasing
and approval. Knowledge of the act of purchasing is represented using the fol-
lowing two rules:

fluent(is owned by(Y,X)) ← occurs(buy(X,Y),S).
holds(is owned by(Y,X),S+1) ← occurs(buy(X,Y),S).

The first rule states defines a fluent of the form is owned by(Y,X) for every
occurrence of an action buy(X,Y). The second rule states that the effect of X
buying Y is that Y is owned by X. Knowledge of X approving Y is similarly
encoded by rules stating that, if X approves Y , then Y is allowed by X.

– 10 –

Step Action allows(acquisition, gov’t) owned by(Motorola, Google)

0 approves(gov’t,acquisition) false false

1 buy(Google,Motorola) true false

2 – true true

Table 2. Values of fluents in each state with awareness and inertia in the knowledge
base.

Step Action allows(acquisition, gov’t) owned by(Motorola, Google)

0 approves(gov’t,acquisition) – –

1 buy(Google,Motorola) true –

2 – true true

Table 3. Values of fluents in each state when the awareness axiom is removed from
the knowledge base.

Step Action allows(acquisition, gov’t) owned by(Motorola, Google)

0 approves(gov’t,acquisition) – –

1 buy(Google,Motorola) true –

2 – – true

Table 4. Values of fluents in each state when awareness and inertia are removed from
the knowledge base.

Given the above sentence and the domain description, our prototype maps
the sentence to ASP statements as described earlier, invokes the solver, and
produces the state information shown in Table 2 describing actions and their
effects at specific time steps along the path.

As shown in the table, at steps 1 and 2 owned by(Motorola,Google) is
false, meaning that Google does not own Motorola. However, when the action
buy(Google,Motorola) occurs at state 1, a transition occurs to State 2 in which
Google does own Motorola, i.e. the value of owned by(Motorola,Google) is true.

To highlight the importance of the awareness axiom, let us consider the
effects of removing it from the knowledge base. Table 3 shows that there are
no truth values for either of the domain fluents until after the occurrence the
actions defining them. That is to say that the value of a fluent is not true or
false unless explicitly expressed in the knowledge base or as a result of an action.
The awareness axiom allows the system to make hypotheses about the values of
each possible fluent in every state[3].

Additionally, if the inertia axiom is removed, the information that can be
inferred about the states of the domain is further reduced. Specifically, Google
owns Motorola in the state just after the purchasing action, but the system has

– 11 –

no information about the ownership in any subsequent states as can be seen in
Table 4. It is easy to see that both awareness and inertia are crucial to having
accurate state information that reflects not only domain knowledge but human-
like intuition.

6.2 Use Case 2: John Sells his Possessions

In this example, we illustrate how the representation proposed in this approach
may be used in conjunction with QA techniques to enhance a QA system’s
ability to reason for answers that are not explicitly stated in the sources or the
knowledge base. Finding such an answer may involve a deeper understanding of
both the domain and the scenario in question. Note that the technical approach
to the QA task itself is not the subject of this example. Rather, the purpose of
this example is to illustrate that our approach can provide a QA system with
useful information that is not otherwise available.

Consider the following sentence: “John sold his most valuable possessions to
Mary before he sold his least valuable possessions to Frank.”

Assume that we have a knowledge base in which the following information
exists about John, and additional commonsense rules exist regarding purchasing
and ownership. First, there are definitions of John’s valuable and invaluable
possessions. For example, John’s house at 123 Lancaster Avenue is listed among
his valuable property. Suppose that we would like to know the answer to the
question “Who currently owns the house at 123 Lancaster Avenue?”. Referring
to the knowledge base alone, the system would incorrectly answer that John owns
the house because it is listed among his valuable property. However, because we
have processed the sentence about John selling his possessions, we now have an
understanding of the effects of his sales on the state of the world. An end-to-end
QA system would then be able to infer that Mary now owns all of John’s valuable
possessions, and because there is no additional information stating that Mary
has sold the house, the system could correctly answer that she is the current
owner.

7 Conclusion

In this paper, we introduced a novel method to interpreting natural language
documents mentioning the occurrence of actions. The approach extends the state
of the art the event-based document representation of [8] by proposing a rich
semantic encoding of actions of the consequences of their occurrence on the
state of the world. We described the motivation for our work, the high-level
approach, our formalization of knowledge and actions, and worked through a
detailed example of processing a natural language source from its original form
to a path of a domain’s transition diagram. Finally, we presented two use cases
– the first demonstrated the role of commonsense knowledge in reasoning about
sources that mention occurrences of actions and the second illustrated that given
a single document and an adequate knowledge base, our approach may provide

– 12 –

enough information to carry out rather sophisticated QA. It is our belief that
this approach is a fundamental component of future contributions to the fields
of Information Retrieval and Question Answering, enabling these systems to
elegantly process unstructured natural language sources at a human-like level. As
this work continues, we intend to lift the simplifying assumptions to enable our
implementation to perform better temporal tagging and translation. Moreover,
the research will extend further to investigate the combination of actions across
multiple natural language sources, the expansion, combination, and revisions
of existing paths in the face of new or conflicting information, and methods
by which the representations can be utilized in the Information Retrieval and
Question Answering processes.

References

1. Allen, J.F.: ”maintaining knowledge about temporal intervals.”. Communications
of the ACM 26.11, 832–843 (1983)

2. Balduccini, M., Gelfond, M.: Diagnostic reasoning with a-prolog. Theory and Prac-
tice of Logic Programming 3(4+ 5), 425–461 (2003)

3. Baral, C., Gelfond, M., Rushton, N.: International Conference on Logic Program-
ming and Nonmonotonic Reasoning. Springer, Berlin (2004)

4. Baral, C., Dzifcak, J., Kumbhare, K., Vo, N.H.: The nl2kr system. Language Pro-
cessing and Automated Reasoning (NLPAR) (2013)

5. Blanco, R., Lioma, C.: Graph-based term weighting for information retrieval. In-
formation retrieval 15.1, 54–92 (2012)

6. Campos, R.: Survey of temporal information retrieval and related applica-
tions.ACM Computing Surveys (CSUR) 47, 2 (2015)

7. Carpineto, C., Ramano, G.: A survey of automatic query expansion in information
retrieval. ACM Computing Surveys (CSUR) 44, 1 (2012)

8. G. Glavas, J.S.: Event-centered information retrieval using kernels on event graphs.
TextGraphs-at Empirical Methods in Natural Language Processing EMNLP’13 8
(2013)

9. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents. The Answer-Set Programming Approach. Cambridge University
Press (2014)

10. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–385 (1991)

11. Manning, C., Christopher, D., Raghavan, P., SchŸtze, H.: Introduction to infor-
mation retrieval., vol. 1. Cambridge University Press, Cambridge (2008)

12. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. Readings in artificial intelligence pp. 431–450 (1969)

13. l. Minard, A.: In: Semeval-2015 task 4: Timeline: Cross-document event ordering.
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval
2015) (2015)

14. UzZaman, N.: Tempeval-3: Evaluating events, time expressions, and temporal re-
lations. preprint, arXiv:1206.5333 (2012)

– 13 –

Good-enough parsing, Whenever possible
interpretation : a constraint-based model of

sentence comprehension

Philippe Blache

CNRS & Aix-Marseille Université
Laboratoire Parole et Langage

blache@lpl-aix.fr

Natural language processing and psycholinguistics are progressively getting closer,
and new language processing architectures, bringing together both computa-
tional and cognitive aspects, emerge. We propose in this position paper a brief
overview of the basic needs paving the way towards such a unified framework
and show how constraints constitute an adequate answer.

What constraints can do: Let’s start with some basic reminders about constraint
programming. Constraints are not only efficient for ruling out unwanted solu-
tions or ill-formed structures. They are also capable of building approached so-
lutions (or even ultimately instantiating values) by restricting the search space.
For example, we can limit the definition domain of an integer variable x by
means of interval constraints such as [x > 1;x < 4] (note that adding a new
constraint [x > 2] leads to the solution x = 3). Moreover, constraints can be of
different types (interval, boolean, numerical, etc.), a same variable being possi-
bly involved in several cosntraints. In this sense, constraints form a system that
constitutes an important source of information: a problem can be described with
a set of constraints, and this description leads to the solution (which is the ba-
sis of distinction between declarative and procedural approaches in computer
science [Colmerauer, 1986]; [Jaffar and Lassez, 1986]). Solving a problem comes
to evaluating the constraint system which leads to instantiate values and more
generally provide information about the set of variables forming the problem. In
other words, the state of the constraint system after evaluation, for a given set
of input values, constitutes a precise description of this input set. We propose
in this short note some arguments in favor of considering this computational
framework as an efficient cognitive model for language processing.

Needs and requirements for sentence processing: Language is comprehended by
humans in real time. To be more precise, sentence interpretation is done such
efficiently in most of the cases, which means that different types of mechanisms
can be at work according to the input. It is important to note that this property
is preserved even when the input is not perfectly-formed (errors, disfluencies, un-
structured productions, etc.), which occurs frequently in natural situations (typi-
cally during conversations). One question is then to explain how is interpretation
possible under noisy input. A classical solution explains that non-canonical pro-
ductions are repaired, the difficulty of the interpretation being correlated to the

– 14 –

number of repairs [Gibson, 1998]. This noisy-channel approach [Levy, 2008a];
[Levy, 2008b]; [Johnson and Charniak, 2004] proposes in particular to introduce
the notions of uncertainty and inference. This constitutes a first answer to an
important requirement: dealing with scarce data. Moreover, in case of ill-formed
productions, it is also necessary to analyze the source of the problem. This
means being capable of parsing the input with robust methods, also providing
information for describing precisely the error. In terms of parsing, this consists
in finding an optimal description, that can also gives account for violations
[Prince and Smolensky, 1993]; [Blache, 2016b]. Finally, language processing is to
be considered as a rational process [Levy, 2008a]; [Anderson, 1990], taking into
account multiple sources of information (verbal, gestural, contextual, etc.).

Cognitive aspects: Investigating the cognitive side of language processing also
leads to the same type of needs. The most important aspect concerns memory :
several studies have shown that sentence processing is not done in a strictly in-
cremental manner. In many cases, a global recognition of entire patterns is at
work. This is typically the case with idioms: starting from a recognition point
(usually the second or the third word of the idiom), the processing becomes
global and the rest of the idiom is not parsed anymore in detail. This is shown
both at syntactic and semantic levels: the difficulty generated by the introduction
of a violation in the idiom is compensated by the global recognition of the pat-
tern [Vespignani et al., 2010]. Moreover, the semantic processing remains shallow
after the recognition point and the semantic content of the words is not even ac-
cessed [Rommers et al., 2013]. In the same perspective, [Swets et al., 2008] has
shown that when reading with no precise task, the attachment of modifiers is
not completely achieved, the dependencies remaining underspecified. These
observations show that in many cases, a simple shallow processing is used
without generating any difficulty in the global interpretation of the sentence. A
complete, deep and strictly incremental processing remains however necessary
when faced with complex sentences, such as illustrated in the following exam-
ple from [Levy, 2013]: “Because the girl that the teacher of the class admired
didnt call her mother was concerned.” In this case a deep analysis, resolving all
dependencies and clause boundaries is necessary to interpret the sentence.

Another important feature has also be underlined by several experiments,
reinforcing the idea that sentence processing is not completely done word-by-
word, but instead relies on a delayed evaluation. This effect is in particular
observable in reading experiments when the presentation rate (the time left be-
tween the presentation of each word) is accelerated [Vagharchakian et al., 2012].
After a certain threshold, the intelligibility of the sentence collapses. This effect
is explained by the fact that in such situations, words are not processed incre-
mentally, but stored into a buffer, from the short-term memory. This delaying
mechanism makes it possible to interpret the new words when enough cognitive
capacity becomes available. When the maximal capacity of the buffer is reached,
the process is blocked.

– 15 –

Processing architectures: Different processing architectures have been proposed
integrating several of these features. In particular, the Good-Enough Theory
[Ferreira and Patson, 2007]; [Traxler, 2014] integrates the fact that sentence in-
terpretation is only done from time to time, delaying the integration until
enough information becomes available. In this case, a complete interpretation
is often delayed (or in some cases never done), and replaced by the identification
of partial meanings, starting from which a general interpretation can be approx-
imated. The basic principle consists there in finding “interpretations over small
numbers of adjacent words whenever possible”. This framework has been precised
by the integration of two different levels of parsing that can be at work: shallow
processing with partial interpretation for the average case and deep processing
when faced with difficulties [Blache, 2016a]. This new architecture implements
the delaying mechanism, opening the way to pattern or global recognition follow-
ing the principles of the good-enough parsing, integrating a “whenever possible”
interpretation.

How constraints implement architectures: Constraints offer an appropriate so-
lution for the implementation of all the different requirements of the proposed
architecture.

– Whenever possible interpretation: In constraint programming, all constraints
are potentially active and assessed when their variables are instantiated.
Moreover, all constraints in a system are independent from each other, which
means that they can be assessed independently, at any time. As a conse-
quence, constraint satisfaction implements implicitly delayed evaluation,
until variables get values (or more generally until enough information be-
comes available). When no value is assigned to a variable, the constraint is
not fully assessed, but makes it possible to restrict the definition domain
(the search space) and to maintain the coherence of the system, leading to
approximated solutions.

– Good-enough parsing : Constraints in general, among which unification, makes
it possible to work with underspecified structures. More precisely, all struc-
tures can be left partially uninstantiated (implementing directly underspec-
ification), and progressively completed when necessary. In other words, a
same structure, whatever its level of specification, can be used in both types
of processing, shallow or deep.

– Noisy-channel : Ill-formed inputs can be parsed thanks to constraint relax-
ation. Constraint violation, completed with weighting or ranking, offers
then the operational framework in the construction of an optimal solution.
Moreover, the set of violated constraints constitutes a precise description of
the source of error.

– Prediction/activation: Constraint systems implement relation networks
within the set of variables, forming constraint graphs. The instantiation
of a variable makes it possible to activate the associated subgraph and their
nodes. An activated node corresponds to a predictable object and a set of
activated nodes (or variables) implements category prediction. In other

– 16 –

words, when enough information becomes available, on top of describing the
constrained structure, it becomes possible to predict new objects.

– Patterns/constructions: Following the declarative characteristics of con-
straint programming, a structure can be described by a set of constraints. In
language processing, complex objects such as constructions can correspond
to set of constraints. A construction (or a pattern) is then recognized when
the constraint subsystem is satisfied.

– No structure: Finally, and most importantly, the state of the constraint sys-
tem after evaluation comes to a precise and in-depth description of the lin-
guistic structure. As a consequence, no specific structure has to be built
prior to the interpretation. Constraints constitute then an adequate answer
for the implementation of non-modular approaches.

As shown above, the integration of cognitive and computational approaches
raises new questions for language processing among which the need to work with
partial structures, to interpret objects only when enough information becomes
available, to deal with noisy inputs and to implement different level of processing,
corresponding to different levels of complexity of the input. These needs form the
basis of recent cognitive principles such as “good-enough parsing” and “whenever
possible interpretation”. We propose to consider constraints as an adequate and
efficient framework for their computational modeling.

References

[Anderson, 1990] Anderson, J. (1990). The adaptive character of human thought.
Lawrence Erlbaum.

[Blache, 2016a] Blache, P. (2016a). Light-and-deep parsing: a cognitive model of sen-
tence processing. In Poibeau, T. and Villavicencio, A., editors, Language, Cognition
and Computational Models. Cambridge University Press.

[Blache, 2016b] Blache, P. (2016b). Representing syntax by means of properties: a
formal framework for descriptive approaches. Journal of Language Modelling.

[Colmerauer, 1986] Colmerauer, A. (1986). Theoretical model of prolog ii. In van
Caneghen, M. and Wane, D., editors, Logic Programming and its Applications. Ablex
Series in Artificial Intelligence.

[Ferreira and Patson, 2007] Ferreira, F. and Patson, N. D. (2007). The ‘good enough’
approach to language comprehension. Language and Linguistics Compass, 1(1).

[Gibson, 1998] Gibson, E. (1998). Linguistic complexity: locality of syntactic depen-
dencies. Cognition, 68:1–76.

[Jaffar and Lassez, 1986] Jaffar, J. and Lassez, J.-L. (1986). Constraint logic program-
ming. Technical report, Department of Computer Science, Monash University, Vic-
toria, Australia.

[Johnson and Charniak, 2004] Johnson, M. and Charniak, E. (2004). A tag-based
noisy channel model of speech repairs. Proceedings of the 42nd Annual Meeting
of the Association for Computational Linguistics, pages 33–39.

[Levy, 2008a] Levy, R. (2008a). Expectation-based syntactic comprehension. Cogni-
tion, 106(3):1126–1177.

[Levy, 2008b] Levy, R. (2008b). A noisy-channel model of rational human sentence
comprehension under uncertain input. Proceedings of EMNLP, pages 234–243.

– 17 –

[Levy, 2013] Levy, R. (2013). Memory and surprisal in human sentence comprehension.
In van Gompel, R. P. G., editor, Sentence Processing, pages 78–114. Psychology Press.

[Prince and Smolensky, 1993] Prince, A. and Smolensky, P. (1993). Optimality Theory:
Constraint Interaction in Generative Grammars. Technical Report RUCCS TR-2.
Rutgers Optimality Archive 537.

[Rommers et al., 2013] Rommers, J., Dijkstra, T., and Bastiaansen, M. (2013).
Context-dependent Semantic Processing in the Human Brain: Evidence from Idiom
Comprehension. Journal of Cognitive Neuroscience, 25(5):762–776.

[Swets et al., 2008] Swets, B., Desmet, T., Clifton, C., and Ferreira, F. (2008). Un-
derspecification of syntactic ambiguities: Evidence from self-paced reading. Memory
and Cognition, 36(1):201–216.

[Traxler, 2014] Traxler, M. J. (2014). Trends in syntactic parsing: anticipation,
bayesian estimation, and good-enough parsing. Trends in Cognitive Sciences,
18(11):605–611.

[Vagharchakian et al., 2012] Vagharchakian, L., G., D.-L., Pallier, C., and Dehaene, S.
(2012). A temporal bottleneck in the language comprehension network. Journal of
Neuroscience, 32(26):9089–9102.

[Vespignani et al., 2010] Vespignani, F., Canal, P., Molinaro, N., Fonda, S., and Cac-
ciari, C. (2010). Predictive mechanisms in idiom comprehension. Journal of Cognitive
Neuroscience, 22(8):1682–1700.

– 18 –

ASP for Abduction in Natural Language
Understanding made more efficient using

External Propagators

Peter Schüller1, Carmine Dodaro2, and Francesco Ricca2

1 Computer Engineering Department, Faculty of Engineering
Marmara University, Turkey

peter.schuller@marmara.edu.tr
2 Department of Mathematics and Computer Science

University of Calabria, Italy
{dodaro,ricca}@mat.unical.it

Abstract. Answer Set Programming (ASP) is a powerful paradigm for
knowledge representation and reasoning. Several tasks in Natural Lan-
guage Understanding (NLU) have been or have the potential to be mod-
eled in ASP. Among these, abduction under various optimality condi-
tions has been recently implemented in ASP. Experiments revealed that
pure ASP is not effective enough because the complete instantiation of
some critical constraints is not scalable. The recent extension of ASP
solvers with external propagators may provide means for avoiding the
instantiation bottleneck, and thus can help to obtain more efficient im-
plementations of abduction in NLU via ASP. We conducted preliminary
experiments with ASP solver interfaces for external propagators. The
results look promising and provide directions for the development of
full-fledged extensions of ASP solvers with non-ground constraints.

Keywords: ASP, Propagators, Abduction, NLU

ASP for Abduction in Natural Language Understanding

Abduction is a popular formalism for NLU, and we here consider a benchmark for
abduction under preference relations of cardinality minimality, coherence [7], and
Weighted Abduction [6]. For example given the text “Mary lost her father. She
is depressed.” using appropriate background knowledge and reasoning formalism
we can obtain the interpretation of the sentence that Mary is depressed because
of the death of her father.

Several tasks in Natural Language Understanding (NLU) have been or have
the potential to be modeled effectively using logic programming techniques [2, 4,
8]. Answer Set Programming (ASP) [3] is a powerful paradigm for knowledge rep-
resentation developed in the area of logic programming that is naturally suited
as a computational means for the realization of abduction under preferences. In-
deed, ASP formulations for the above NLU tasks were described in [8]. However,
the prevalent evaluation strategy adopted by state of the art ASP systems, which

– 19 –

is carried out by performing in a row grounding (i.e., variable elimination) and
solving (i.e., search for the answer sets of a propositional program), resulted to
be not effective in large instances. This is due to the grounding blow-up caused
by a small set of constraints.

In this work we study initial experiments on an extension of the ASP solver
wasp [1] suitable to overcome this problem. Indeed, wasp has been extended with
an API that allows a user to provide the solver with external Python programs
extending the main solving procedure. In particular, we experimented with the
API features for checking answer sets for constraint violations and adding propo-
sitional constraints lazily. In this way we circumvent the critical issue of ground-
ing some constraints of the ASP programs modeling NLU tasks. Our solution
works in the presence of optimization including the usage of unsatisfiable-core
optimization, which is not possible in the Python API of the Clingo solver [5].

Experimenting with external propagators

Preliminary Results. Table 1 shows preliminary experiments with the wasp
solver on the Bwd-A encoding for first order Horn abduction from [8]. We show
accumulated results for 50 natural language understanding instances from [7]
for objective functions cardinality minimality, coherence [7], and Weighted Ab-
duction [6]. We compare two evaluation methods: Constraint instantiates all
constraints during the initial grounding step and sends them to the solver, while
Propagator omits a significant portion of constraints (those related to transitiv-
ity) from the initial grounding and instantiates them lazily in the propagator
whenever a transitivity violation is detected in an answer set candidate.

We observe that for all objective functions, there are out-of-memory con-
ditions for 6 instances (maximum memory was 5 GB) while memory is not
exhausted with propagators, and average memory usage is significantly lower
with propagators (1.7 GB vs. around 150 MB). For cardinality minimality, the
average time to find the optimal solution decreases sharply from 76 sec to 8 sec
and we find optimal solutions for all instances. For coherence we can solve more
instances optimally however the required time increases from 64 sec to 103 sec
on average and 4 instances reach the timeout (600 sec). For Weighted Abduc-
tion, which represents the most complex optimization criterion, we solve fewer
instances (37) compared with using pre-instantiated constraints (44 instances).

Propagators can clearly be used to trade space for time, and in some cases
we decrease both space and time usage. For the complex Weighted Abduction
objective functions, we can observe in the Odc column that many more invalid
answer sets (2067) were rejected by the propagators compared with cardinality
minimality (70) or coherence (751).

Ongoing and Future Work. Our current prototype implementation only
checks when a full answer set candidate has been found, while most violated
constraints could also be detected based on a partial interpretations. Thus we
are implementing a propagator that can work on partial interpretations. We also
plan to experiment with the optimal frequency of propagation, which is known

– 20 –

Objective Function Method MO TO OPT T M Odc
sec MB

Cardinality Minimality Constraint 6 0 44 76 1715 0
Propagator 0 0 50 8 119 70

Coherence Constraint 6 0 44 64 1723 0
Propagator 0 4 46 103 131 751

Weighted Abduction Constraint 6 0 44 66 1731 0
Propagator 0 13 37 229 141 2067

Table 1. Experimental Results: MO/TO indicates number of instances were mem-
ory/time was exhausted, OPT the number of optimally solved instances, T/M indi-
cates average time and memory usage, and Odc shows number of times an answer set
was invalidated and a new clause was learned, i.e., a constraint was lazily instantiated.

to play a role in similar implementations for robotics planning. Moreover, our
prototype is able to learn only a single constraint per invalidated answer set,
however one answer set might contain several violations of not instantiated con-
straints. Adding all these at once might guide the solver much better to find an
optimal solution that violates no constraints.

Acknowledgements. This work has been supported by Scientific and Techno-
logical Research Council of Turkey (TUBITAK) Grant 114E777 and by MISE
under project “PIUCultura”, N. F/020016/01-02/X27.

References

1. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: International
Conference on Logic Programming and Non-monotonic Reasoning. pp. 40–54 (2015)

2. Balduccini, M., Baral, C., Lierler, Y.: Knowledge representation and question an-
swering. In: Handbook of Knowledge Representation, Foundations of Artificial In-
telligence, vol. 3, pp. 779–819. Elsevier (2008)

3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Com-
munications of the ACM 54(12) (2011)

4. Christiansen, H.: Constraint programming for context comprehension. In: Brézillon,
P., Gonzalez, A.J. (eds.) Context in Computing - A Cross-Disciplinary Approach
for Modeling the Real World, pp. 401–418. Springer (2014)

5. Gebser, M., Kaminski, R., Obermeier, P., Schaub, T.: Ricochet Robots Reloaded: A
Case-Study in Multi-shot ASP Solving. In: Advances in Knowledge Representation,
Logic Programming, and Abstract Argumentation, pp. 17–32. Springer (2015)

6. Hobbs, J.R., Stickel, M., Martin, P., Edwards, D.: Interpretation as Abduction.
Artificial Intelligence 63(1-2), 69–142 (1993)

7. Ng, H.T., Mooney, R.J.: Abductive Plan Recognition and Diagnosis: A Compre-
hensive Empirical Evaluation. In: Knowledge Representation and Reasoning. pp.
499–508 (1992)

8. Schüller, P.: Modeling Variations of First-Order Horn Abduction in Answer Set
Programming. Fundamenta Informaticae (2016), to appear, arXiv:1512.08899 [cs.AI]

– 21 –

